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ABSTRACT

This study presents a methodology for updating the finite element model of a
structure for damage detection purposes using an incomplete set of experimen-
tally obtained modal frequencies and modeshapes. The proposed damage detec-
tion methodology involves a least sguares minimization of the modal dynamic
force balance residuals subject to quadratic inequality constrains introduced to
properly account for the expected measurement and modeling errors. A three-
step iterative procedure is proposed to iteratively predict the probable locations
and size of significant, damage by updating the properties of the finite element
model of the structure at the element level. Simulated modal data obtained on
a three-dimensiona truss structure are used to assess the strengths, limitations,
and overall performance of the proposed damage detection methodology in rela-
tion to the number of measured modes, number and location of sensors, as well
as location and magnitude of damage.

INTRODUCTION

In past years, several studies have been devoted in reconciling finite element
models with measured modal data. The need for model updating arises because
there are always errors associated with the process of constructing a theoret-
ical model of a structure. This leads to uncertain accuracy in predicting the
response, Another important application of model updating is in the prediction
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of structural damage (sce, for example, Natke and Yao 1988, Stubbs ef (d 1990,
Yao and Natke 1994). The location and size of damage can be it ferred by mon-
itoring the reduction in stiffuess and mass properties of the clements comprising
the finite clement model of the structure.

The general problem of model updating involves the selection of the best
model from a parameterized class of models that best fits the modal data as
judged by an appropriately sclected measure of fit. The following are the diffi-
culties associated with this inverse problem: 1) the modal data are contaminated
by measurement error; 2) the chosen class of parametric finite element models
is not repr esentative of the actual structural behavior for all possible values of
the model parameters; 3) the modal data arc incomplete relative to the model
complexity needed to produce physically meaningful models. For example, the
set of observed DOF is usually a small subset, of theset of model DOF due
to the limited number of sensors used or due to limited accessibility within a
structure. Also, the number of identifiable modes of vibration is much less than
the number of model DOF due to large measurement noise for higher modes,
limited bandwidth in the response and hardware limitations. As a results of
the aforementioned difficulties, the inverse problem leads to non-unique solu-
tions and ill-conditioning (Berman 1984 and 1989, Beck 1989, Mottershead and
Friswell 1993, Beck and Katafygiotis 1997).

A literature review of existing finite clement model updating and damage
detection methods can be found in the survey by Mottershead and Friswell
(1993). Each method has its own advantages and shortcomings and there is no
acceptable methodology for successfully treating the model updating and dam-
age detection problem. Most nethods address the problem by choosing some
mathematical criteria which creates a unique optimal model while neglecting
other models that can give an equally good fit to the measured data. Recently,
new methods (Beck 1989, Beck and Katafygiotis 1997) based on Bayesian statis-
tical inference have been developed for properly addressing the non-uniqueness
by computing al (finite or infinite) models that can give acceptable fit to the
data (Katafygiotis and Beck 1997, Katafygiotis and Beck 1991 and 1997, Beck
et al 1994, Vanik 1997). The latter methods are powerful and have shown great
promise in properly incorporating modeling and measurement errors, as well
as properly addressing many of the difficultics encountered in the model up-
dating problem, especially those associated with model and response prediction
accuracy,

The problem of damage detection involves as afirst step the identification
of the location (or locations) of damage. Recently, various methods have been
proposed for identifying probable damage locations in a structure using modal
test data (Fahrat and Hemez 1993, Levine et al 1996). These arc based on
modeshape expansion techniques and when combined with  appropriately-defined
localized error measures, they have shown pr omise in predicting the locations in
the structure that arc more likely to be damaged. In particular, the least-squares
error measure subject to inequality constraius proposed by Levine et al (1996
and 1997) properly accounts for the presence of measurement and modeling
errors. The robustness aund reliability of the resulting modeshape expansion



technique for predicting the modeshape components a unneasured points have
been successfully evaluated in a previous study using actual experimental data
obtained on the Jet Propulsion Laboratory mici o-precision interferometer truss
(Levine ct a 1997). Compared with other modeshape expansion techniques,
the least squares minimization technique with quadratic inequality const1ains
was foundto provide the most reliable mode shape estimates and predictions
of damage locations, even in adverse situations of significant measurement and
model error.

Once the damage has been located, the magnitude of damage is predicted by
updating the finite clement model of the structure. The preferable methods of
updating are usualy the ones which preserve structural connectivity. The work
by Farhat and Hemez (1993) comb ines modeshape expansion techniques with
updating capabilities for predicting both the location and size of damage in a
structure. It has been shown to work reasonably well for the cases which has been
applied (Hemez and Farhat 1995).In arecent work, Alvin (1997) has pointed
out potential problems of this method and suggested several modifications which
are found to provide a more robust technique for locating and sizing errors in the
finite element. model of a structure. In this work, we formulate a model updating
and damage detection methodology which is based on the mode-shape expansion
method presented by Levine et al (1996). The measure of fit used in the proposed
methodology for predicting the probable damage locations and size of damage
accounts for the expected measurement error in both modal frequencies and
mode shape components, as well as the expected modeling errors.

STRUCTURAL MODELS

The structure is modeled by the following general class of classically-damped
linear models:
M) 2 +C(0) z +K(0)x = f(1) 1)

where the global mass and stiffness matrices M (6) and K (6) are respectively
assembled, using a finite element analysis, from the element (or substructure)
mass and stiffness matrices Af¢(6) and K(6) as follows

M) = Y M(0) @
K@) = S K(0) 3

The class of models has been parameterized using the parameter set & which
may represent mass and st iffness properties at the element or substructure level.
The parameterization is chosen such that the undamaged finite element model
of the structure corresponds to § = 1. Examples of finite clement properties that
can be included in the parameter set 6§ are: modulus of elasticity, cross-sectional
area, thickness, moment of incrtia and mass density of the finite elements com-
prising the model, as well as spring (translationalor rotational) stiffnesses used
to model fixity conditions at joints or boundarics.



In general, the system matrices Al(0) and K (6) are nonlinear functions of 6.
However, a parameterization which often arises in practical applications is the
case for which both M () and K(f)) are lincar functions of 6, that is,

]!

K@) = Ko+ Kb (4)
1=1
]l

M) = Mo+ M (5)
=1

where Ko, K;, Mo and M; arc constant matrices indeprendent of 6. Without loss
of generdity, the linear parameterization will be employed to demonstrate the
methodology. However, the incorporation of a general nonlinear parameteriza-
tion is straightforward and will not be discussed in detail.

DAMAGE DETECTION FORMULATION

The objective in a modal-based finite element model updating methodology is
to find the values of the parameter set ¢ so that the modal data generated by
the linear class of models best matches, in some sense, the experimentally ob-
tained modal data. Thus, a model updating methodology involves minimizing a
measure of fit between the model--based and the experimentally obtained modal
data. A measure of fit that is explored herein is directly related to the modal
dynamic force balance residuas r(w, ¢, 8), defined by

m(w, ¢, 0) = [K(0) — w*M(0)]¢ (6)
Note that the modal dynamic force balance residuals satisfy the equations
r(wi(0), pi(0), ) O, i1l . m (7)

where w;(0) and ¥:(0),i = 1, -+, m are respectively the modal frequencies and
mass-normalized mode shapes of the first m modes of the structure generated
by the model (1).

For convenience, let the subsets a and o be the sets of measured and un-
measured model degrees of freedom, respective] y. The set [a, 0] contains the
total number of degrees of freedom of the structura model. Each mode shape
vector ¢, can be P,t, itioned in the form ¢! = [¢, o], Where ¢o; and ¢,; are
the components of the mode shape ¢; at the measured and unmeasured degrees
of freedom, respectively.

Let now @; ant] ¢,; be the experimentally obtained frequencies and mode-
shapes of the structure at the mneasured degrees of freedom. The proposed
method for model updating searches for the o})timal model parameters ¢ which
minimize an appropriately selected norm of tile modal dynamic force balance
residuas 7(w;, ¢, #) subject toconditions that reflect the fact that both the
modal frequencies w; and modeshapes @i are sufficiently close, depending on the
experimental error expected, to the meastred modal frequencies and modeshape



components. Mathematically, the model updating problem is stated as

nnnZ||7(w1,<j),, Ol g, = xnmz“ K(0) - @XM( ))d),-lR (8)
subject to ) \
Pd)i - qy)m‘ < @y (?)ai y 1= ]a A 2] (9)

where HIITH2 = 27z is the usual Eucledian normy, ||z}, = &’ Ra, R; is an appro-
priately selected weighting matrix which scales the contribution of each mode in
the nwi.sure of fit (8), and P isa constant matrix of zeroes and ones satisfying
¢ia = Pdiy ic. it maps a mode-shapre veetor ¢ Lo a vector @ia that it icludes only
the components Of ¢; at the measured degrees Of freedom .

The unknown quantities involved in the proposed error measure (8) include
the model properties 0, as well as the components of the vector ¢: of the con-
tributing modes at both measured and unmeasured model degrees of freedom.
The optimal vector ¢ resulting from the minimization can be viewed as the
expanded modeshape consistent with the measured modal data.

Next, the measure of fit in (8) is further analyzed in order to deterrnine a
reasonable choice for the weights R;. The analysis will also provide insight into
the relationship between the measure in (8) and other more direct measures of
fit involving the differences between the model and measured modal frequencies
as well as measures involving the mode-shape orthogonality conditions. For
this, consider first the contribution Ji (i, 8) = [|7(&;, &, 6) ||, from the i-th
modal term inthe overall mecasure of fit (8). Using the model modeshapes
¢, 7 =1,---,N and expanding the vectors ¢i in the form <7)1-:E§i]aij% =
Y2, (0P M (0)¢:) s, the i-th modal residuals can be written in the form

N N
160 0) = 3 3 aaaluiel — @2t + o) + T MORMOpe  (10)

J=1k=1

This expression can be simplified considerably by choosing R; such that
©F M) RiM(0) i = v/ dji (11)

where 4, is the Kronecker delta, and +yi; depends on the choice of ;. Substi-
tution of (11) into (1 O) gives

N WE - O2)2
Hen0) = S M(0)0) 2 (12

1

The choice (11 ) was preferred because it is the only one that results in positive
terms in the modal measure of fit (1 O).

Note that for ¢ = @5, i =1,- . . . m,ie. the case of perfectly correlated
expanded and model mode-shapes, all but one term corresponding to 7 = 7 in
the modal mecasure Ji (¢, 0) disappear. The modal measure Ji(¢,6) becomes
proportional to the fractional difference between the squares of the model and
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ncasured modal frequencies for mode 7, weighted by (v,@, )'. This equivalence
between the measure J;i(¢,, 0) and the more direct measure involving tile differ-
ence between the squares of t he model and measured modal frequencies was first
reported ina recent study (Vanik 1997). In the general case for which ¢; # ¢,
all terms in the modal error mcasure (12) are present. In particular, the terms in
the modal error measure ( 12) corresponding to 7 # 7 involve the mass orthogo-
nality condition between the measured and model modeshapes, weighted by the
factors (@i} (w? -- ©7)? /&f. Note that for amodel which is well-corrclatfwl with
the measured data, the factors (¢! M{0)¢, )2 =~ 1 and (I M(0)¢:)? =~ O for j#1.
Therefore, in the process of selecting tile optimal model, the mass orthogonality
conditions are also enforced through the terms in (12) corresponding to j # i.
The term in (12) corresponding to j=¢provides insight, into the problem of
choosing the weights R;.From the aforementioned analysis, it becomes apiparent
that weighting the modal error measures J; (¢, ) is equivalent to weighting the
errors between the experimental and model medal frequencies. Thus, R; can be
selected such that errors between the experimental and model modal frequencies
are weighted for cach mode accord ing to weights 5;- This is accomplished by
choosing 7 so that the factor (yic;)* is proportional to non-dimensional weights
Bi- From a Bayesian statistical point of view, the weights i reflect the magni-
tude of the measurement errors expected between the experimental and model
frequencies for each mode (Beck 1989, Vanik 1997). The size of these errors can
be obtained from measurement data taken from repeated modal test analyses.
Several choices for the weights R; can be made to satisfy condition (11) and,
at the same time, guarantec that the factor (v,&;)* is proportional to the non-
dimensional quantity ;. Attention is only given to the following two choices:

R = BM Y6)/o! == () =B (13)
R = BKOMO)K () == (vicn)* = B} [w} (14)

For the first choiceit is assumed that A ~1(f) is non-singular. Thus, it is not
applicable for structures with zero mass .degrecs of freedom. However, this prob-
lem can easily be eliminated by applying Guyan model reduction to eliminate
the degrees of freedom corresponding to zero mass. For the second choice it
is assumed that the matrix /'(6) is non-singular and so it is not directly ap-
plicable for structures that are not supported or they are partially supported
such as those employed in space or tested in the lab by suspending them by
very soft springs. An advantage of the first choice is that it simplifies con-
siderably the computation involved in updating € in the case for which both
K(6) and M(0) satisfy (4) and (5). This study explores the use of the second
weight Fi== ;K7 1(0) M(6) K'(0)in the identification of the location and size
of damage.

Finally, the inequality constrains (9) are introduced to account for the ex-
pected measurement. error in the mode-shape components, with @i controlling
the expected magnitude of these errors. The value of «a; can be computed from
a statistical analysis of mecasurcment data taken from repeated modal test anal-
yses. It is worth pointing out that the methodologies presented by Farhat and
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Hemez (1993) and Alvin (1997) arce special cases of the measure (8) and condi-
ion (9). In particular, both met hods correspond to values a; = 0, which fail to
directly incorporate tile expected measurcement error. In contrast, the proposed
inequality condition provides more flexibility in improving considerably the fit
between model and measured modal data over the space of the parameter set 6.

The optimization can be performed using available inequality constaint opti-
mization techniques. However, this is a complex and time-consuming nonlinear
optimization problem. A more convenient iterative procedure is proposed next
which avoids somne of the computational difficult ies arising in the minimization
of (8). In addition, the iterative procedure provides guidance in identifying the
locations of damage and limiting the number of the parameters to be updating
to only a few, thus reducing the problem of ill-conditioning and non-uniqueness
expected when a large number of parameters is updated. Specifically, the pa-
rameters and the modeshapes are obtained using a three-step procedure. In
the first step, a set of complete modeshapes is obtained by a model expansion
method. In the second step, damage is localized in the structure using an ap-
propriately defined clement strain energy error measurement to identify faulty
elements. In the third step, the sizc of probable damage is predicted by updat-
ing the properties of the identified faulty elements using theset of expanded
modeshapes obtained from the first stage. Thesethree steps arc described in
detailed as follows.

Step 1: Modeshape Expansion

Given the current model of the structurcat the A-th iteration step, corresponding
to the value of the paramecter set 8, designated by %), an expanded modeshapes
is computed by solving the constrained minimization problem:

N (VI N
min §4] 1k (@%)) — @21 (60)) ¢ N (15)
subject to . _
Poi—¢ai <a; Pai , i=1, -+-,m (16)

The minimization is performed with respect to the modeshape components at
both measured and unmeasured degrees of freedom while holding the values of
the model parameters @ fixed at their current values 8%). Both the objective
function and the inequality constrains are quadratic in the set of unknown pa-
rameters. It can be shown that a unique optimum exists (Levine etal 1997),
denoted herein by ' i = 1, -- ., m. The algorithm for obtaining the unique
solution is described in the work by Levine et al (1996, 1997).

Step 2: Location of Damage

The expanded modeshapes predicted inthe first step are used to identify possible
locations of damage by examining, for cach finite element. (or substructure), the
difference in element strain energy between the expanded mode-shapes and the
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model mode-shapes. The modal clement. (or substructure) strain energy for a
finite clement (or substructure) designated by < (> is defined as

1 ..
S (¢n) = 590 K9, (17)

where jee 1S the clement or substructure stiffuess, and ¢; is the components Of

the modeshape ¢; corresponding to the degrees of freedom of the element or the
substructure. The following measure of moda strain encrgy error is used

s(@ D= sl )

AS E——
S )

(18)

where o = ©; (6®) is the modeshape computed form the current, structural
model. It is expected that sufficiently large AS“ will be due to modeling errors
in the particular element (or substructure) and willbe indicative of probable
damage in the element (or substructure). The propertics of these elements (or
substructures) are chosen to be updated if |AS¢|> tol;, where tol; is a user-
specified threshold. These properties form an active subset of the parameter set

9, designated By TO;rest of the parameters in @ that are not included

in the active set form the inactive set, designated by'8i.The properties of
the finite element model included in the active set 6% ) may differ from those
in the set 0((12 obtained form the previous iteration.

Step 3: Size of Damage

The dtiffness, mass and geometrical properties at the identified probable loca-
tions of significant errorsin the properties of the finite element model of the
structure are updated using the latest estimates 4*3;("'“), i =1,---,mof the
complete modeshapes. This step involves the updating the values of the active
model parameters 8, identified in step 2. The values of the inactive sct are kept
constant and equal to those in the set 6*) determined in the previous iteration.
The reduction in the values of 0, of the parameter set. is indicative of possible
damage. The following unconstrained minimization problem:

; (k4 — i 0 G plk41)
om;!% (6 ) 0<k:§§““ r(@tnt, 07 (19)
— . ik (k+ 1)y _ -2 (k+1) ‘(k—l»l) 2
mip 32K D) - afmEr Y o

gives the optimal vaftfé¥d "Aisis.anonlinear optimization problem which
can be solved using available iterative schemes such as modified Newton method.
For the case for which K (6) and M(6) arc lincar function of ¢ and R; is indepen-
dent of 6, the objective function J(€) is quadratic in § and the unique solution
6.71) canbe obtained without iterations by solving a linear algebraic system in
#. It canbe readily shown that the system for the optimal éﬁ'}ff“has the form:

H(@(“ 1)) (}[((f;?l) - h(cir(“”) (21)
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where the (7, %) component of I and the j-th component of h are given by

m

Hi(9) = Y (Lug) Ri( Lij i) (22)
i=1
and "
hi(@) = > (Liogi) Ri(Li;9) (23)
i=1

respectively, in which Li; = K; - @*M;, 5 =0,1,---,n.

Since tile updated finite clement model contains inaccuracies clue to the fact
that the expanded modeshapes are based on a current inaccurate model, the
three step procedurce is repeated using the new updated finite element model
until convergence is reached. Specifically, the iterative process is terminated

gk+1) _ (k)
Hk+1)

where toly is a user-specified threshold level.

< t()lz

APPLICATIONS

The model updating technique has been implemented in matlab to enhance
the capabilities of the existing integrated Modeling of Optica Systems (IMOS)
software package developed at Jet Propulsion Laboratory. Simulated modal data
generated from a ~llulti-degree-c)f-frccclo~~l truss structures are used to assess
the performance of the proposed model updating methodology in relation to
the number of measured modes, number and location of sensors, as well as
magnitude and location of errors in the propert ies of the initia finite element
model. The role of measurement and modeling errors on the resolution of the
location and size of errors in the properties of the finite element model is also
examined.

The model of the undamaged structure is a three-dimensional truss shown
in Figure 1. It consists of 135 axial rod elements (1 per strut) with total of
120 degrees of freedom (3 per node). The structure is supported at the right
end by restraining all degrees of freedom of nodes 1to 4. The modulus of
elasticity, cross-sectional area and mass density for all members are chosen to
be the same and with values such that the first eight modal frequencies of the
model range from 10 Hz to 200 Hz. The element 63, 72 and 108, located at
different places on the structure as shown in Figure 1 are damaged by reducing
the cross-sectional area of these clement by 50%. Simulated modal data are
obtained for the damaged structure and are contaminated by 1 % and 5% noise
level in the values of the modal frequencies and mode-shapes respectively. The
first. eight modes of the damaged structure are taken as the measured modes.

Two cases areused to assess the performance of the method in relation to

the number and location of sensors. | the first case, designated by Case A,
a large mumber of 99 sensors are used. These sensors are places at nodes 9
through 37 and pyrovide incasurements for al three degrees of freedom for each
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node. For the second case, designated by Case 13, only 15 sensors are used. A
set of three sensors is placed at each of the nodes b, 13, 21, 29 and 37 to provide
measurements for al three degrees of freedom per node. The properties in the
parameter set. 6 to e updated are t Hie cross- sectional area of each member.
The methodology was slightly modified to consider as acceptable changes in the
values of the parameter set ¢ only those which correspond to reduction in the
closs-sectional area of the members. The predicted location and size of damage
is shown in Figures 2 and 3 {or the cases A and B, respectively. For each case, the
mean and the standard deviation of the prediction is shown. Only five samples
were used in the estimates provided in these figures.

For case A, the predicted mean reductions in the cross-sectional area of
members 63, 72 and 108 are 45%, 28% and 52%, respectively. These members
have the highest mean reduction in cross-sectional area.The relatively small
values of the standard deviation of these estimates is indicative of the relatively
high confidence that damage has occurred in these members. In contrast, the
standard deviation estimates of the rest of the members with non-zero mean
reduction of cross-sectional area are rc]ativ%*@arge. This is due to the fact that
only a small percentage of thesamples have resulted in non-zero reduction in
cross-sectional area of these members. Specifically, 3 to 4 out of the 5 samples
predicted no reduction or almost insignificant reduction in the cross-sectional
area for these members. The small size of sainplesused resulted in relatively
high mean reduction values. It is expected thatas the number of samples is
increased, the mean values and the standard deviation for these members will
decrease. For case B, the predicted mean reductions in the cross-sectiona area
of members 63, 72 and 108 are 58%, 32% and 33%, respectively. It is worth
noting that the resolution of size of damage at element 108 is not as good as for
the Case A since sensors are not directly placed in the vicinity of the member
108. However, the elements 63, 72 and 108 have been correctly identified as the
damaged elements.

Numerical results have also shown that the accuracy of the prediction in-
creases as the number of measured modes increases, or as the level of the mea-
surement error decreases. Location of number of sensors play also a role in the
resolution of location and size of damage.

CONCLUSIONS

The proposed model updating methodology is suitable for damage detection
purposes. It is based on an iterative scheme which provides estimates of prob-
able locations and size of damage by updating the properties of the finite ele-
ment model at the element level. The identification of the probable locations of
damage is based on element strain cnergy error ~lwa.sure between the expanded
modeshapes predicted at a given iteration and model modeshapes predicted
from the previousiteration. The size of the damage is then updated using the
predicted expanded mode-shapes. These estimmates are iteratively updated until
convergence is reached. A study using simulated data demonstrated that the
methodology is promising for reliably predicting both the location and the size
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of damage in a structure. Measurement error was incorporated in the data by
adding noise in the simulated data. The noise levels considered are similar to
those expected in practical applications. Although the method suggested herein
works well with simulated modal data and simulated measurement error, the
practical use of this method with real data requires further study.
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Fig. 1. Three-dimensional truss structure
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